C%g SIGPwny

FA2024 Week 07 o 2023-10-20

PWN I

Akhil and Jake

ctf.sigpwny.com

sigpwny{AAAAAAAABBBBBBBBCCCCCCCC

SERVER, ARE YOU STiLL THERE?

IF 50, REPLY *POTRTO (6 lEn'ERS) . ser Meg wants these 6 letters: POTATO.

) ser Meg wants these 6 letters: POTATO.

SERVER, ARE YOU STiLL THERE?
IF 50, REPLY "BIRD" (4 LETTERS). User Meg wants

) these 4 letters: BIRD. Chese 4 letters: BIRD.

SERVER, ARE. YOU STiLL. THERE?
IFS0,REPLY "HAT" (500 LETTERY),

/

ser Meg wants these 500 letters: HAT.

What is PWN?

- More descriptive term: binary exploitation
- Exploits that abuse the mechanisms behind how compiled
code is executed

- Dealing with what the CPU actually sees and executes on or near the
hardware level

- Most modern weaponized/valuable exploits fall under this
category

- This is real stuff!!
- Corollary: this is hard stuff. Ask for help, or if you don't need help,
help your neighbors :)

R

Memory Overview

- Programs are just a bunch of numbers

ranging from 0 to 255 (bytes)

- Each number is stored at an "address”
In the range 0x0-0OxFFFFFFFFFFFFFFFF

- Think of it as a massive array/list
- Bytes in a program serves one of two
purposes

- Instructions: tells the processor what to

do

- Data: has some special meaning, used by

the instructions

Examples: part of a larger number, a letter, a
memory address

> hexdump -C /bin/cat

00000000
00000010
00000020
00000030

*

00004000
00004010
00004020
00004030
00004040
00004050
00004060
00004070
00004080
00004090
00004020
000040b0

ca fe ba be 00 00 00 02
00 00 40 00 00 00 80 70
80 00 00 02 00 01 00 00
00 00 00 00 00 00 00 0O

cf fa ed fe 07 00 00 01
12 00 00 00 08 05 00 00
19 00 00 00 48 00 00 00
52 4f 00 00 00 00 00 00
00 00 00 00 01 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
5f 5f 54 45 58 54 00 00
00 00 00 00 01 00 00 00
00 00 00 00 00 00 00 00
05 00 00 00 05 00 00 00
5f 5f 74 65 78 74 00 00

01 00 00 07 00 00 00 03
00 00 00 Oe 01 00 00 OcC
00 00 d1 00 00 00 00 0e
00 00 00 00 00 00 00 00

03 00 00 00 02 00 00 00
85 00 20 00 00 00 00 00
5f 5f 50 41 47 45 5a 45
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
19 00 00 00 d8 01 00 00
00 00 00 00 00 00 00 00
00 20 00 00 00 00 00 00
00 20 00 00 00 00 00 00
05 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

R

Memory Layout

Lowest address Memory Region

(0x0000000000000000) : text

(instructions)

.data
(initialized
globals)

.bss
(uninitialized
globals)

heap

Highest address

(OXFFFFFFFFFFFFFFFF)

_—

stack
(runtime data)

0

Memory Layout

Lowest address
(0x0000000000000000)

We care about these

Highest address
(OXFFFFFFFFFFFFFFFF)

Memory Region

—_—

: /.text :

instructions
\\() i

\/
.data

(initialized
globals)

.bss
(uninitialized
globals)

heap

|

?

stack

\)

\\Szuntime datil//

i ——

0

The Stack

oA

Calling Functions

method 1(a, b, c¢);

oA

Calling Functions (Arguments)

method 1(a, b, c¢);

%»rdi = a

%»rsi = b

»rdx = ¢

oA

Calling Functions (Call Stack)

method 1(a, b, c¢);

Low Address

...Prior Stack Data

— High Address

The stack &CX
=

Calling Functions (Call Stack)

method 1(a, b, c);

Stack Pointer (%rsp)

Previous Base Pointer (%rbp) — ...Prior Stack Data

— High Address

The stack &CX
=

Calling Functions (call Instruction)

Instruction Pointer (%rip) — method_l (d, b, C) ’

8 bytes

Return Address

Stack Pointer (%rsp)

Previous Base Pointer (%rbp) —

The stack

~— High Address

RS

N~

Calling Functions (enter/Prologue)

method 1(a, b, c¢);

Stack Pointer (%rsp)

8 byte

Saved Base Pointer

Return Address

Previous Base Pointer (%rbp)

The stack

— High Address

R

N~

Calling Functions (enter/Prologue)

method 1(a, b, c¢);

Stack Pointer (%rsp),
Base Pointer (%rbp)

8 bytes 4 Saved Base Pointer

Return Address

Previous Base Pointer

— High Address

The stack &gg

N~

Calling Functions (Execution)

method 1(a, b, c¢);

Stack Pointer (%rsp)

Local Variables

Saved Base Pointer

Base Pointer (%rbp)

Return Address

The stack

— High Address

R

N~

Calling Functions (Execution)

method 1(a, b, c¢);

Stack Pointer (%rsp)

Local Variables

Base Pointer (%rbp)
Saved Base Pointer

Return Address

— High Address

The stack &gg

N~

Calling Functions (leave/Epilogue)

method 1(a, b, c¢);

Local Variables | Stack Pointer (%rsp),
Base Pointer (%rbp)

Saved Base Pointer

Return Address

Previous Base Pointer

— High Address

The stack &gg

N~

Calling Functions (leave/Epilogue)

method 1(a, b, c¢);

Local Variables

Saved Base Pointer

Stack Pointer (%rsp)
Return Address

Base Pointer(%rbp) —

— High Address

The stack &gg

N~

Calling Functions (ret Instruction)

method 1(a, b, c);

Local Variables

Saved Base Pointer

— Instruction Pointer (%rip)
Return Address ——
Stack Pointer (%rsp)

Base Pointer(%rbp) —

~—— High Address
The stack

&

Calling Functions (Summary)

8 bytes

8 bytes

method 1(a, b, c¢);

»rdi = a %»rsi = b %»rdx = ¢

Local Variables

Low Address
'\

Saved Base Pointer

Stack grows to

Return Address

lower address

...Prior Stack Data

The stack

4 High Address

R

N~

Smashing the Stack

oA

The Stack

void vulnerable() {
puts("Say Something!\n");
char stack var 1[8];
char stack var 2[8];
gets(stack var 2);
puts(stack var 1);

}

int main() {
vulnerable();
}

stack var_2

stack var_1

Saved Base Pointer

Return Address (inside main in
.text)

R

N~

Dangerous Function of the Day:

- Writes letters typed by user into address provided

- But memory stores numbers, not letters!
- ASCII: maps from bytes (aka numbers 0-255) to letters
- gets actually reads arbitrary bytes, not just ones that map to letters

- writes as much input you provide it
- In C, memory is always allocated in fixed numbers of bytes
- What if we write more than is allocated at the provided address?

People did DESCRIPTION top

not realize th i
in the 90s Never use this function.

gets() reads a line from stdin into the buffer pointed to by s
until either a terminating newline or EOF, which it replaces with
a null byte ('\@'). No check for buffer overrun is performed
(see BUGS below).

Buffer Overflow

void vulnerable() {
puts("Say Something!\n");
char stack var 1[8];
char stack var 2[8];
gets(stack var 2);
puts(stack var 1);

stack var 2[8]

stack var 1[8]

Saved Base Pointer

Return Address

> ./vulnerable
Say Something!

0

Buffer Overflow

void vulnerable() {
puts("Say Something!\n");
char stack var 1[8];
char stack var 2[8];

» gets(stack var 2);

puts(stack var 1);

stack var 2[8]

stack var 1[8]

Saved Base Pointer

Return Address

> ./vulnerable
Say Something!
-AAAAAAAABBBBBBBB

0

Buffer Overflow

void vulnerable() {
puts("Say Something!\n");
char stack var 1[8];

char stack var 2[8];
gets(stack var 2);
puts(stack var 1);

stack var 2[8]

stack var 1[8]

Saved Base Pointer

Return Address

> ./vulnerable
Say Something!
AAAAAAAABBBBBBBB
—TBBBBBBBB

0

Buffer Overflow

void vulnerable(void) {
puts("Say Something!\n");
char stack var 1[8];
char stack var 2[8];

—p gets(stack var 2);
puts(stack var 1);

}

stack var 2[8]

stack var 1[8]

Saved Base Pointer

Return Address

> ./vulnerable
Say Something!
AAAAAAAABBBBBBBB

0

Buffer Overflow

void vulnerable(void) {
puts("Say Something!\n");
char stack var 1[8];
char stack var 2[8];

—p gets(stack var 2);
puts(stack var 1);

}

JAVAVAVEVAVAVAVAY

BBBBBBBB

Saved Base Pointer

Return Address

> ./vulnerable
Say Something!
AAAAAAAABBBBBBB

0

Buffer Overflow

void vulnerable(void) {
puts("Say Something!\n");
char stack var 1[8];
char stack var 2[8];
gets(stack var 2);

—p puts(stack var 1);

}

JAVAVAVEVAVAVAVAY

BBBBBBBB

Saved Base Pointer

Return Address

> ./vulnerable
Say Something!
AAAAAAAABBBBBBB

BBBBBBB

0

The Return Address

— Every time you call a function, you go to a new block of code
— Where do you go when your done executing it?

— Calling a function stores a "return address"” on the stack
— The address of the code to execute after the current function

void vulnerable(void) { ‘
puts("Say Something!\n"); stack _var 2
char stack var 1[8];
char stack var 2[8]; stack var_ 1
gets(stack var 2);

puts(stack_var_1); Saved Base Pointer

}

int main() {
vulnerable();
puts("Hi!"); //Instruction at 9x1004

0x1004

0

}

Redirect Code Flow

stack var 1[8]

void vulnerable(void) {
puts("Say Something!\n");

Saved Base Pointer

char stack var 1[8];
gets(stack var_1);

}

Return Address

int win(); // 0x0000000008044232

> ./vulnerable
Say Something!

AAAAAAAABBBBBBBB\x32\x42\x04\x08\x0
0\ x00\ x00\x00

Note: you can't type these characters directly!

0

Redirect Code Flow

void vulnerable(void) {

JAVAVAVAVAVAVAVAY

puts("Say Something!\n");
char stack var 1[8];

BBBBBBBB

gets(stack var 1);
}

Return Addr =
Ox0000000008044232

int win(); // ©x0000000008044232

> ./vulnerable

Say Something!
AAAAAAAABBBBBBBB\x32\x42\x04\x08\x0

0\ x00\ x00\x00

Note: you can't type these characters directly!

0

Integer Overflows

- Safe input functions limit the number of characters they read
- Like all things in C, integers are stored in a fixed number of

bytes

- There is a maximum number they can store: for int, this is 2°1-1

- If you go past that, it wraps around!

- This fact is often used to still achieve buffer overflows in modern

program

void main() {
printf("%d", 12345678*9876543210);

}

Output: -366107316

R

Delivering your Exploit

oA

Little Endianness

- Numbers are little endian in x86-64
- The least significant ("little") byte is stored first (at lowest memory
address)

- ©0x1122334455667788 is stored in memory as
- 88 77 66 55 44 33 22 11

Low High

A

Getting function addresses

With objdump:
> objdump -d chal | grep "<main>:"
00000004011 ce <main>:

Or with GDB:
> gdb ./chal

> 1 addr main
Symbol "main" is at 0x40l1llce in a file compiled without debugging.

Or with Ghidra:

by inspection CEE;
£

N~

echo

- "echoes" your input

- Enable escape codes: echo -e
- \XNN -> OxNN

- Can only be used if your exploit is the same every time

> echo -e '"\x01\x02\x03\x04' | ./chal

> echo -e '"\x01\x02\x03\x04' | nc ...

0

Pwntools

from pwn import *

Connect to sigpwny server
conn = remote('chal.sigpwny.com', 1337)

Read first line
print(conn.recvline())

Write exploit
conn.sendline(A" * 8)

Interactive (let user take over)
conn.interactive()

> python3 -m pip install pwntools

0

Pwntools

from pwn import *
conn = remote(...)

Address of win function
WIN ADDR = Ox0804aabb

Overflow stack
exploit = b'A' * 8

Push win address after overflow

p64(number) is a pwntools function that converts the
number WIN _ADDR to a proper little-endian address
exploit += p64(WIN_ADDR)

Send exploit
conn.sendline(exploit)
conn.interactive()

0

Pwntools Local

from pwn import *

conn = process('./path/to/file")

Must be in a terminal with multiplexing! (e.g. tmux)
conn = gdb.debug('./path/to/file’)

pause()

gdb.attach(conn)

exploit = b'A'*16
conn.sendline(exploit)

conn.interactive()

0

Pwntools Cheat Sheet

- conn.recvline()/recvn(8)/recvuntil ("> ")
- conn.sendline()/send()/sendlineafter("> ",b'...")
- p64(0x0011223344556677), p32(0x00112233)
- ELF("/path/to/file")
- Allows you to load addresses directly!

exe = ELF('./chal')
payload += exe.symbols['main’]

- context.terminal = ["tmux', 'splitw', '-f', '-h']

R

Challenges

- Integer overflow
- Bug Bounty 1-6
- Bug Bounty 5 requires knowledge of shellcode

- Bug Bounty 6 requires knowledge of format string vulnerabilities
- Both will be covered in PWN I

- pwnymart

- Bug Bounty 1-4 print a visualization of the stack
- Bug Bounty 5, 6 (and most pwn chals in ctfs) won't do this - use gdb

Instead!
(&
=

Next Meetings

2024-10-24 « This Thursday
- Cryptography | with George and Nikhil

2024-10-27 « Next Sunday
- Cryptography Il with Richard and Emma

2024-10-31 « Next Thursday
- Halloween!

0

ctf.sigpwny.com

sigpwny{AAAAAAAABBBBBBBBCCCCCCCC}

Meeting content can be found at
sigpwny.com/meetings.

LS SIGPwny

N\

